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Abstract

Principal parametric resonance in transverse vibration is investigated for viscoelastic beams moving with axial pul-
sating speed. A nonlinear partial-differential equation governing the transverse vibration is derived from the dynamical,
constitutive, and geometrical relations. Under certain assumption, the partial-differential reduces to an integro-partial-
differential equation for transverse vibration of axially accelerating viscoelastic nonlinear beams. The method of
multiple scales is applied to two equations to calculate the steady-state response. Closed form solutions for the ampli-
tude of the vibration are derived from the solvability condition of eliminating secular terms. The stability of straight
equilibrium and nontrivial steady-state response are analyzed by use of the Lyapunov linearized stability theory.
Numerical examples are presented to highlight the effects of speed pulsation, viscoelascity, and nonlinearity and to com-
pare results obtained from two equations.
� 2004 Published by Elsevier Ltd.
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1. Introduction

Many engineering devices involve the transverse vibrations of axially moving materials. One major prob-
lem is the occurrence of large transverse vibrations, termed as parametric vibrations, due to initial tension
or axial speed variations (Wickert and Mote, 1988; Abrate, 1992; Chen, in press). In fact, many real systems
can be represented by the axially moving materials with pulsating speed. That is, the axial transport speed is
a constant mean velocity with small periodic fluctuations. There are comprehensive studies on such systems.
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Pasin (1972) studied the stability of transverse vibrations of beams with periodically reciprocating motion
in axial direction. Pakdemirli et al. (1994) investigated dynamic stability in transverse vibration of an axially
accelerating string based on the Galerkin truncation. Pakdemirli and Ulsoy (1997) applied the discretiza-
tion–perturbation method and the direct-perturbation method to analyze the stability of an axially accel-
erating string. Öz et al. (1998) applied the method of multiple scales to study dynamic stability of an axially
accelerating beam with small bending stiffness. Based on one-term Galerkin discretization, Ravindra and
Zhu (1998) analyzed chaotic behaviors of axially accelerating beams. Özkaya and Pakdemirli (2000) applied
the method of multiple scales and the method of matched asymptotic expansions to construct nonresonant
boundary layer solutions for an axially accelerating beam with small bending stiffness. Öz and Pakdemirli
(1999) and Öz (2001) used the method of multiple scales to calculate analytically the stability boundaries of
an axially accelerating beam under simply supported conditions and fixed–fixed conditions, respectively.
Parker and Lin (2001) adopted a one-term Galerkin discretization and the perturbation method to study
dynamic stability of an axially accelerating beam subjected to a tension fluctuation. Öz et al. (2001) applied
the method of multiple scales to determine the steady-state transverse response and its stability of axially
accelerating nonlinear beams. Özkaya and Öz (2002) applied artificial neural network algorithm to deter-
mine stability of an axially accelerating beam.
All above-mentioned researchers assumed the strings or beams under their consideration to be elastic,

and did not account for any dissipative mechanisms. Nevertheless, the modeling of dissipative mechanisms
is an important research topic of axially moving material vibrations (Wickert and Mote, 1988; Abrate,
1992; Chen, in press). Viscoelascity is an effective approach to model the damping mechanism (Park,
2001). The parametric vibrations of axially moving viscoelastic strings have been extensively investigated.
These researches include numerical simulation of transient vibrations (Fung et al., 1997, 1998; Zhao and
Chen, 2002; Chen and Zhao, in press; Chen et al., in press), analytical expressions of steady-state responses
(Zhang and Zu, 1999a,b; Chen and Zu, 2003; Chen et al., 2003, 2004d), and chaotic behaviors (Chen et al.,
2003, 2004a,b; Chen and Zhang, 2004). However, The literature that is specially related to axially acceler-
ating viscoelastic beams is relatively limited. Based on three-term Galerkin discretization, Marynowski
(2002) and Marynowski and Kapitaniak (2002) compared the Kelvin model with the Maxwell model
and the Bügers model, respectively through numerical simulation of nonlinear vibration responses of an
axially moving beam excited by a changing tension, and found that all models yield similar results in the
case of small damping. Marynowski (2004) further studied numerically nonlinear dynamical behavior of
an axially moving viscoelastic beam with time-dependent tension based on four-term Galerkin discretiza-
tion. Based on second-term Galerkin discretization, Chen et al. (2004c) analyzed the stability of axially
accelerating linear beams, and Yang and Chen (2005) studied numerically bifurcation and chaos of an axi-
ally accelerating nonlinear beam. So far the analytical studies on axially accelerating viscoelastic beams
have been confined to the linear model, and only numerical approaches have been used to treat nonlinear
vibration of axially accelerating viscoelastic beams. To address the lack of research in this aspect, the pre-
sent investigation is devoted to analytical study of axially accelerating viscoelastic nonlinear beams.
When transverse motion is treated for axially moving beams, there are two types of nonlinear models, a

partial-differential equation or an integro-partial-differential equation. The partial-differential equation is
derived from considering the transverse displacement only, and the integro-partial-differential equation
is traditionally derived from decoupling the governing equation of coupled longitudinal and transverse
motion under the quasi-static stretch assumption that supposes that the influence of longitudinal inertia
can be neglected. The application of the partial-differential equation is limited (Marynowski, 2002, 2004;
Marynowski and Kapitaniak, 2002; Yang and Chen, 2005), while the quasi-static stretch assumption is
widely adopted in parametric vibration (Ravindra and Zhu, 1998; Chakraborty and Mallik, 1998; Öz
et al., 2001; Pellicano et al., 2001) as well as free vibration (Wickert, 1991; Pellicano and Zirilli, 1997;
Pellicano and Vestroni, 2000) and forced vibration (Pellicano and Vestroni, 2002; Chakraborty et al.,
1999). In present investigation, two nonlinear models are developed for transverse vibration of an axially
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accelerating viscoelastic beam. The method of multiple scales is applied to both models without discretiza-
tion. The corresponding steady-state responses and their stability are compared.
2. Governing equations of an axially accelerating viscoelastic beam

A uniform axially moving viscoelastic beam, with density q, cross-sectional area A, moment of inertial I,
and initial tension P0, travels at the time-dependent axial transport speed v(T) between two prismatic ends
separated by distance L. Consider only the bending vibration described by the transverse displacement
U(X,T), where T is the time and X is the axial coordinate. The Newton�s second law of motion yields
qA
o2U

oT 2
þ 2v o2U

oXoT
þ dv
dT

oU
oX

þ v2
o2U

oX 2

� �
¼ o

oX
ðP 0 þ ArÞ oU

oX

� �
� o2MðX ; T Þ

oX 2
ð1Þ
where r(X,T) and eL(X,T) are respectively the axial disturbed stress and M(X,T) is the bending moment.
The viscoelastic material of the beam obeys the Kelvin model, with the constitution relation
rðX ; T Þ ¼ EeLðX ; T Þ þ g
oeLðX ; T Þ

oT
ð2Þ
where eL(X,T) is the Lagrangian strain
eLðX ; T Þ ¼
1

2

oUðX ; T Þ
oX

� �2
ð3Þ
which is used to account for geometric nonlinearity due to small but finite stretching of the beam.
For a slender beam (for example with I/(AL2) < 0.001), the linear moment–curvature relationship is suf-

ficiently accurate,
MðX ; T Þ ¼ EI
o
2UðX ; T Þ
oX 2

þ gI
o
3UðX ; T Þ
oX 2oT

ð4Þ
Substitution of Eqs. (2)–(4) into Eq. (1) yields the governing equation of transverse motion of an axially
accelerating viscoelastic beam
qA
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þ dv
dT

oU
oX

þ v2
o2U

oX 2

� �
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2
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o3U

oX 2oT
ð5Þ
If the spatial variation of the tension is rather small, then one can use the averaged value of the disturbed
tension 1

L

R L
0 Ar dx to replace the exact value Ar. In this case, Eq. (1) becomes
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Substitution of Eqs. (2)–(4) into Eq. (6) leads to
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Obviously, Eq. (6) is a nonlinear partial-differential equation, while Eq. (7) is a integro-partial-differential
equation.
Eq. (5) can be derived from the governing equation for coupled longitudinal and transverse vibration

from considering the transverse vibration only and setting all longitudinal variables to zero. Eq. (7) can
be obtained through uncoupling the governing equation for coupled longitudinal and transverse vibration
under the quasi-static stretch assumption in a similar way in (Wickert, 1992). Under this assumption, the
dynamic tension component to be a function of time alone. In traditional derivation, Eq. (7) seems more
exact than Eq. (5) because it is the transverse equation of motion in which the longitudinal displacement
field is taken into account. However, the derivation here indicates that Eq. (5) can be reduced to Eq. (7)
based on the quasi-static stretch assumption.
3. The multiscale analysis

Introduce the dimensionless variables and parameters
u ¼ Uffiffi
e

p
L
; x ¼ X

L
; t ¼ T

ffiffiffiffiffiffiffiffiffiffiffi
P 0

qAL2

s
; c ¼ v

ffiffiffiffiffiffi
qA
P 0

r
; k2f ¼

EI

P 0L2
; a ¼ Ig

eL3
ffiffiffiffiffiffiffiffiffiffiffi
qAP 0

p

k1 ¼
ffiffiffiffiffiffi
EA
P 0

r
; k2 ¼

Ag

eL
ffiffiffiffiffiffiffiffiffiffiffi
P 0qA

p
ð8Þ
where bookkeeping device e is a small dimensionless parameter accounting for the fact that both the trans-
verse displacement and the viscosity coefficient are very small. Eqs. (5) and (7) can be respectively cast into
the dimensionless form
o2u
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In the present investigation, the axial speed is assumed to be a small simple harmonic variation about the
constant mean speed,
cðtÞ ¼ c0 þ ec1 sinxt ð11Þ
Substitution of Eq. (11) into Eqs. (9) and (10), respectively yields
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M
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2
ek21

o2u
ox2

Z 1

0

ou
ox

� �2
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where the mass, gyroscopic, and linear stiffness operators are respectively defined as
M ¼ I ; G ¼ 2c0
o

ox
; K ¼ ðc20 � 1Þ

o
2

ox2
þ v2f

o
4

ox4
ð14Þ
The method of multiple scales will be employed to solve Eqs. (12). A first order uniform approximation
is sought in the form
uðx; t; eÞ ¼ u0ðx; T 0; T 1Þ þ eu1ðx; T 0; T 1Þ þOðe2Þ ð15Þ
where T0 = s is a fast scale characterizing motions occurring at xk (one of the natural frequencies of the
corresponding unperturbed linear system), and T1 = es is a slow scale characterizing the modulation of
the amplitudes and phases due to nonlinearity, viscoelascity, and possible resonance. Substitution of Eq.
(15) and the following relationship
o

ot
¼ o

oT 0
þ e

o

oT 1
þOðe2Þ; o2

ot2
¼ o2

oT 20
þ 2e o2

oT 0oT 1
þOðe2Þ ð16Þ
into Eq. (9) and then equalization of coefficients of e0 and e in the resulting equation lead to
M
o
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oT 20
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Under the simple support boundary conditions
uð0; tÞ ¼ uð1; tÞ ¼ 0; o
2u
ox2

����
x¼0

¼ o
2u
ox2

����
x¼1

¼ 0 ð19Þ
The solution to Eq. (17) has been given by Wickert and Mote (1990)
u0ðx; T 0; T 1Þ ¼
X1
n¼1

½/nðxÞAnðT 1ÞeixnT 0 þ �/nðxÞ�AnðT 1Þe�ixnT 0 	 ð20Þ
where xn and /n are respectively the nth natural frequency and complex mode function of the correspond-
ing linear homogeneous system. Under the boundary conditions (19), the mode function is (Öz and
Pakdemirli, 1999)
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/nðxÞ ¼ eibnx �
ðb24n � b21nÞðeib3n � eib1nÞ
ðb24n � b22nÞðeib3n � eib2nÞ

eib2nx � ðb24n � b21nÞðeib3n � eib1nÞ
ðb24n � b23nÞðeib3n � eib3nÞ

eib2nx

� 1� ðb24n � b21nÞðeib3n � eib1nÞ
ðb24n � b22nÞðeib3n � eib2nÞ

� ðb24n � b21nÞðeib3n � eib1nÞ
ðb24n � b23nÞðeib3n � eib3nÞ

" #
eib4nx ð21Þ
where bjn (j = 1,2,3,4) are four roots of the following four-order algebraic equation
k4fb
4
jn þ ð1� c2Þb2jn � 2xnbjn � x2n ¼ 0 ð22Þ
If the variation frequency x approaches two times of any natural frequency of the system (17), principal
parametric resonance may occur. To explore the nth principal resonance, it does not lose generality for u0 to
include only the nth mode vibration
u0ðx; T 0; T 1Þ ¼ /nðxÞAnðT 1ÞeixnT 0 þ cc ð23Þ

where cc stands for the complex conjugate of all preceding terms on the right hand of an equation. Substi-
tuting Eq. (23) into Eq. (18) and expressing the trigonometric functions in exponential form yield
M
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where the dot and the prime denote derivation with respect to the slow time variable T1 and the dimension-
less spatial variable x, respectively. A detuning parameter r is introduced to quantify the deviation of x
from 2xn and x is described by
x ¼ 2xn þ er ð25Þ

Substitution of Eq. (25) into Eq. (24) leads to
M
o
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The terms with e should be regrouped in the equation of e2 order. Hence Eq. (26) can be cast in the form
M
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where NST stands for the terms that will not bring secular terms into the solution.
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Eq. (27) has a bounded solution only if a solvability condition holds. The solvability condition demands
that the possible secular term coefficient at right hand of Eq. (27) be orthogonal to every solution of the
homogeneous problem. That is
�2 _Anðixn/n þ c0/
0
nÞ þ ic0c1�/

00
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0000
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A2n�An;/n

� �
¼ 0 ð28Þ
where the inner product is defined for complex functions f(x) and g(x) on [0, 1] as
hf ; gi ¼
Z 1

0

f �g dx ð29Þ
Application of the distributive law of the inner product to Eq. (28) leads to
_An þ alnAn þ c1vn
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2
n
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where
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and
jn ¼
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0
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The coefficients ln, vn, and jn are determined by the modal parameters of unperturbed system (17), which
are dependent on c0 and kf and are independent of, c1 and k1.
Principal parametric resonance in the system governed by Eq. (13) can be analyzed via the method of

multiple scales in a similar way. The solvability condition is still expressed by Eq. (30) with coefficients
given by Eq. (31), while the other coefficients is defined by
jn ¼
R 1
0
�/n

�/
00
ndx

R 1
0
�/
02
n dxþ 2

R 1
0

/0
n
�/
0
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R 1
0
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00
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4 ixn
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0
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R 1
0
�/n/

0
ndx

� � ð33Þ
instead of Eq. (32).
4. Steady-state responses and their stability

Express the solution to Eq. (30) in polar form
AnðT 1Þ ¼ anðT 1ÞeiunðT 1Þ ð34Þ

In Eq. (34), an(T1) and un(T1) are respectively the amplitude and the phase angle of the response in the nth
principal parametric resonance. For mode functions given by Eq. (21), it can be numerically verified that
ReðlnÞ > 0; ImðlnÞ ¼ 0; ReðjnÞ ¼ 0; ImðjnÞ > 0 ð35Þ

Substituting Eqs. (34) and (35) into Eq. (30) and separating the resulting equation into real and imaginary
parts give
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a0n ¼ ½aReðlnÞ þ c1ImðvnÞ sin hn � c1ReðvnÞ cos hn	an

anh
0
n ¼ anr þ 2c1½ReðvnÞ sin hn þ ImðvnÞ cos hn	an �

1

2
v21ImðjnÞa3n

ð36Þ
where
hn ¼ rT 1 � 2un ð37Þ

For the steady-state response, the amplitude an and the new phase angle hn in Eq. (36) are constant. Set-

ting a0n ¼ 0 and h0
n ¼ 0 in Eq. (30), and then eliminating hn from the resulting equations lead to
a2½ReðlnÞ	
2 þ � r

2
þ 1
4
k21ImðjnÞa2n

� �2
¼ c21½ReðvnÞ	

2 þ c21½ImðvnÞ	
2 ð38Þ
It is obvious that Eq. (38) possesses a singular point at the origin (trivial zero solution), which represents the
straight equilibrium. In addition, there may exist nontrivial periodic solution with amplitudes defined by
Eq. (38), namely
an1;2 ¼
ffiffiffiffiffiffi
Im

p
ðjnÞ

k1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r 
 4
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c21 jvnj

2 � a2½ReðlnÞ	
2

qr
ð39Þ
Eq. (39) is the closed form solution of the amplitude of nontrivial steady-state response. From Eq. (39), it
can be concluded that the nontrivial steady-state solutions exist only if the following conditions hold,
a 6
c1 jvn j
ReðlnÞ

ð40Þ

r P r1;2 ¼ �2
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2

q
ð41Þ
To determine the stability of the trivial solution, suppose that the perturbed solutions of Eq. (36) take the
form
AnðT 1Þ ¼
1

2
½pnðT 1Þ þ iqnðT 1Þ	e

rT1
2 i ð42Þ
where pn and qn are real functions. Substituting Eqs. (34) and (35) into Eq. (36) and separating the resulting
equation into real and imaginary parts yield
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_qn ¼ � r
2
þ c1ImðvnÞ

h i
pn � ½aReðlnÞ � c1ReðvnÞ	qn þ

1

4
k21ImðjnÞðp2n þ q2nÞpn

ð43Þ
The Jacobian matrix of the right hand function of Eq. (43), calculated at (0,0) is
�aReðlnÞ � c1ReðvnÞ r
2
� c1ImðvnÞ

� r
2
� c1ImðvnÞ �aReðlnÞ þ c1ReðvnÞ

� �
ð44Þ
with the characteristic equation
k2 þ 2aReðlnÞk � c21 jvnj
2 þ a2½ReðlnÞ	

2 þ r
2

� �2
¼ 0 ð45Þ
By the use of the Routh–Hurwitz criterion, the stability conditions can be determined as
r < r1 ¼ �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21 jvnj

2 � a2½ReðlnÞ	
2

q
ð46Þ
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or
r > r2 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21 jvnj

2 � a2½ReðlnÞ	
2

q
ð47Þ
Otherwise, the trivial solution is unstable. The Lyapunov linearized stability theory indicates that the insta-
bility of a nonlinear system coincides with that of the corresponding linear system. Hence there exists
an instability interval [r1,r2] of trivial solution. The instability condition of the trivial solution coincides
with the existence condition of the first nontrivial solution, and the stability condition of the trivial solution
coincides with the existence condition of the second nontrivial solution.
The stability of the nontrivial solutions can be determined by the following equation derived from Eq.

(36) on the condition that an 5 0.
a0n ¼ ½aReðlnÞ þ c1ImðvnÞ sin hn � c1ReðvnÞ cos hn	an

h0
n ¼ r þ 2c1½ReðvnÞ sin hn þ ImðvnÞ cos hn	 �

1

2
v21ImðjnÞa2n

ð48Þ
The Jacobian matrix of right hand function of Eq. (48) calculated at (an1,2,hn1,2), is
0 
c1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21 j vnj

2 � a2½ReðlnÞ	
2an1;2

q
�v21ImðjnÞan1;2 �2aReðlnÞ

2
4

3
5 ð49Þ
Here the definition of nontrivial solutions
aReðlnÞ þ c1ImðvnÞ sin hn1;2 � c1ReðvnÞ cos hn1;2 ¼ 0

r þ 2c1½ReðvnÞ sin hn1;2 þ ImðvnÞ cos hn1;2	 �
1

2
v21ImðjnÞa2n1;2 ¼ 0

ð50Þ
is used. The characteristic equation of matrix (49) is
k2 þ 2aReðlnÞk 
 c1v
2
1ImðjnÞa2n1;2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21 j vnj

2 � a2½ReðlnÞ	
2

q
¼ 0 ð51Þ
According to the Routh–Hurwitz criterion, the first nontrivial solution is always stable, and the second
nontrivial solution is always unstable.
5. Numerical results

Consider an axially moving beam with vf = 0.8 and c0 = 2.0. The first two natural frequencies of unper-
turbed system (17) and coefficients in corresponding mode functions (21) are x1 = 5.3692, b11 = 3.9906,
b21 = �1.2424 + 2.4397i, b31 = �1.2424�2.4397i, b41 = �1.5058, and x2 = 30.1200, b12 = 7.4497,
b22 = �1.2497 + 6.0726i, b32 = �1.2497�6.0726i, b42 = �4.9503. Eq. (31) gives l1 = 45.8597,
v1 = �1.0456 + 1.1879i, and l2 = 709.7023, v2 = �0.4182 + 0.9776i.
For the nonlinear model (12), Eq. (32) gives j1 = 61.8985i and j2 = 156.8368i. Based on Eq. (39), Fig. 1

depicts the relationship between the amplitude and the detuning parameter for first two principal paramet-
ric resonance, in which the solid or dot lines stand for stable or unstable amplitudes, respectively. In the
figures, c1 = 1.0, k1 = 0.2, and a = 0.01 (in Fig. 1(a)), 0.001 (in Fig. 1(b)). In both the first and the second
principal resonance, only the trivial zero solution exists and is stable for r < r1. At r = r1 the trivial solu-
tion losses its stability and a stable nontrivial solution occurs. At r = r2 the unstable trivial solution be-
comes stable again, and an unstable nontrivial solution bifurcates. The instability interval in the first
principal resonance is larger than that in the second principal resonance, which indicates that the low order
principal resonance is more significant. Fig. 2 illustrates the effect of the axial speed variation amplitude for



Fig. 1. The amplitude and the detuning parameter relationship of Eq. (12): (a) the first principal resonance and (b) the second principal
resonance.

Fig. 2. The effect of the axial speed variation amplitude of Eq. (12): (a) the first principal resonance and (b) the second principal
resonance.

Fig. 3. The effect of viscosity of Eq. (12): (a) the first principal resonance and (b) the second principal resonance.
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first two principal parametric resonance, in which the solid lines denote c1 = 1.0 and the dot lines denote
c1 = 0.5 in Fig. 2(a) and c1 = 0.8 in Fig. 2(b). Thus the increasing speed variation amplitude leads to the
larger instability interval. Fig. 3 shows the effect of viscosity coefficient, in which the solid lines denote
a = 0.01 (in Fig. 3(a)) and a = 0.001 (in Fig. 3(b)) and the dot lines denote a = 0.03 (in Fig. 3(a)) and
a = 0.0012 (in Fig. 3(b)). Hence the larger viscosity coefficient results in the smaller instability interval.
Fig. 4 displays the effect of nonlinearity, in which the solid and dot lines, respectively stand for k1 = 0.2
and k1 = 0.25. The amplitudes of both the stable and unstable nontrivial solutions increase with the
decrease of the nonlinear term coefficient, while the instability interval is independent of the coefficient.



Fig. 4. The effect of nonlinearity of Eq. (12): (a) the first principal resonance and (b) the second principal resonance.

Fig. 5. The amplitude and the detuning parameter relationship of Eq. (13): (a) the first principal resonance and (b) the second principal
resonance.

Fig. 6. The effect of the axial speed variation amplitude of Eq. (13): (a) the first principal resonance and (b) the second principal
resonance.
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For the nonlinear model (13), Eq. (33) gives j1 = 40.9617i and j2 = 94.4142i. Fig. 5 demonstrates the
relationship between the amplitude and the detuning parameter for first two principal parametric reso-
nance, and Figs. 6–8 present the effects of the speed variation, the viscosity coefficient, and the nonlinear
term coefficient, respectively. In these figures, all parameters are the same as those in corresponding figures
for nonlinear model (12). The numerical simulations indicate that two models are qualitatively same, while
there exist quantitative differences. In fact, Fig. 9 is the superposition of Figs. 1 and 5, in which the solid
and dot lines represent the results of Eqs. (12) and (13). The nontrivial solution amplitude derived from Eq.
(12) is smaller, and the instability intervals are the same.



Fig. 7. The effect of viscosity of Eq. (13): (a) the first principal resonance and (b) the second principal resonance.

Fig. 8. The effect of nonlinearity of Eq. (13): (a) the first principal resonance and (b) the second principal resonance.

Fig. 9. Comparison of two nonlinear models: (a) the first principal resonance and (b) the second principal resonance.
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6. Conclusions

This paper is devoted to nonlinear parametric vibration of axially accelerating viscoelastic beams. A
nonlinear partial-differential equation governing transverse vibration is derived from the Newton second
law, the Kelvin constitutive relationship, and the Lagrangian strain. Under the assumption that the tension
of beam can be replaced by the averaged tension over the beam, the equation reduces an integro-partial-
differential equation. The two equations are analyzed via the method of multiple scales in principal para-
metric resonance. The nontrivial steady-state response and its existence conditions are presented. The
Lyapunov linearized stability theory is applied to obtain the stability conditions of straight equilibrium
and nontrivial steady-state response. The investigation demonstrates that there exists a instability interval
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of the detuning parameters on which the straight equilibrium is unstable, and the first (second) nontrivial
steady-state response is always stable (unstable). Numerical calculations show that the models have the
same tendencies to change with related parameters. The lower order principal resonance has the larger
instability interval. The instability interval increases with the increasing axial speed variation amplitude
and the decreasing viscosity coefficient. The amplitude of nontrivial solutions increases with the decrease
of the nonlinear term coefficient. Although both models yields the same instability interval, the amplitude
of nontrivial solutions calculated from two models are slightly different.
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Öz, H.R., 2001. On the vibrations of an axially traveling beam on fixed supports with variable velocity. Journal of Sound and
Vibration 239, 556–564.
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